PINQuin, a framework for differentially private analysis

Examensarbete för masterexamen

Använd denna länk för att citera eller länka till detta dokument: https://hdl.handle.net/20.500.12380/176660
Ladda ner:
Fil Beskrivning StorlekFormat 
176660.pdfFulltext1.36 MBAdobe PDFThumbnail
Visa
Bibliografiska detaljer
FältVärde
Typ: Examensarbete för masterexamen
Master Thesis
Titel: PINQuin, a framework for differentially private analysis
Författare: Tavallaei Ebadi, Hamid
Sammanfattning: Privacy is a humans right to seclude themselves, or information about themselves, from surveillance and view of others. Different cultures define and respect privacy differently but they usually share some basic concepts. Usually a special information that distincts one person or a group of population from others is considered personally sensitive. One aspect of privacy is related to anonymity which tries to remove or hide this personally sensitive information. Differential privacy is a robust standard that aims to protect individual's privacy when disclosing results from statistical analysis. In this master thesis we present a new model for differentially private data mining. As a result of this thesis we introduce a new method for privacy budgeting, namely record based differential privacy budgeting and PINQuin, our framework based on PINQ, that uses this new method. We also present experimental results comparing PINQuin with PINQ.
Nyckelord: Data- och informationsvetenskap;Computer and Information Science
Utgivningsdatum: 2013
Utgivare: Chalmers tekniska högskola / Institutionen för data- och informationsteknik (Chalmers)
Chalmers University of Technology / Department of Computer Science and Engineering (Chalmers)
URI: https://hdl.handle.net/20.500.12380/176660
Samling:Examensarbeten för masterexamen // Master Theses



Materialet i Chalmers öppna arkiv är upphovsrättsligt skyddat och får ej användas i kommersiellt syfte!