Reliable Wireless Sensor Networks in Smart Homes

Examensarbete för masterexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/225874
Download file(s):
File Description SizeFormat 
225874.pdfFulltext1.19 MBAdobe PDFView/Open
Type: Examensarbete för masterexamen
Master Thesis
Title: Reliable Wireless Sensor Networks in Smart Homes
Authors: Tedblad, Roger
Abstract: Wireless sensor communications play a key role in the emerging Internet of Things digital ecosystem. As the industry now gets ready to roll out the second generation of IoT-devices, effort is directed to fully standardize the protocol suite of wireless sensor networks, and assure full IP connectivity with devices. The protocols CoAP andMQTT are possible candidates for a highly functional application layer for the Internet of Things in terms of reliable transmissions and adherence to the less verbose attributes of wireless sensor networks where sleep cycles are utilized in an effort to keep the overall power utilization of end nodes low. Given these attributes, the protocols limit the number of messages sent to the minimum necessity in order to convey a current sensor value or actuating data. In neglecting other forms of communications, such as keepalive correspondence, the element of uncertainty to whether devices are operational or not increases over time given the less verbose approach. This thesis aims to examine the need of basic communication between devices and server in Smart Home settings, in an eort to keep a updated state view of the network, and reduce this element of uncertainty while still trying to comply with the less verbose nature of constrained network environments. With a more immediate and up-to-date view of the network, the server is able to take action at a faster rate when devices in the network fail or are unable to communicate. This will make wireless sensor networks more applicable for soft real time systems where critical devices are used, such as wireless security systems. The thesis aims at providing an application level keep-alive algorithm, which can be independently operable, to serve as a viable option to keep a more up-to-date view of safety-critical devices in wireless sensor networks than offered by current protocols that are implemented in present-day operating systems for the Internet of Things such as RIOT OS and Contiki OS.
Keywords: Data- och informationsvetenskap;Computer and Information Science
Issue Date: 2015
Publisher: Chalmers tekniska högskola / Institutionen för data- och informationsteknik (Chalmers)
Chalmers University of Technology / Department of Computer Science and Engineering (Chalmers)
URI: https://hdl.handle.net/20.500.12380/225874
Collection:Examensarbeten för masterexamen // Master Theses



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.