Clustering Cancer Tumours using Unsupervised Deep Learning Techniques

Examensarbete för masterexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/242825
Download file(s):
There are no files associated with this item.
Type: Examensarbete för masterexamen
Master Thesis
Title: Clustering Cancer Tumours using Unsupervised Deep Learning Techniques
Authors: Lilja, Oskar
Abstract: The modern technology of DNA microarrays has made high-dimensional genomic data available for large-scale analysis. This thesis investigates how unsupervised deep learning techniques may be used as a class discovery method analysing cancer tumour data. Furthermore, the possibility of inferring which genes most strongly contribute in the differentiation of cancer types is discussed. Gene expression data from The Cancer Genome Atlas of 10 different cancer tumour types are analysed. A deep autoencoder network clearly separates cancer tumours as well as known subtypes of tumours already in 2-dimensions. The results are compared with other dimensionality reduction methods like principal component analysis.
Keywords: Klinisk medicin;Grundläggande vetenskaper;Medicinska grundvetenskaper;Matematik;Fysik;Clinical Medicine;Basic Sciences;Basic Medicine;Mathematics;Physical Sciences
Issue Date: 2016
Publisher: Chalmers tekniska högskola / Institutionen för matematiska vetenskaper
Chalmers University of Technology / Department of Mathematical Sciences
URI: https://hdl.handle.net/20.500.12380/242825
Collection:Examensarbeten för masterexamen // Master Theses



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.