Scheduling for VGOS Twin-Telescopes

Examensarbete för masterexamen

Please use this identifier to cite or link to this item:
Download file(s):
File Description SizeFormat 
246158.pdfFulltext16.43 MBAdobe PDFView/Open
Type: Examensarbete för masterexamen
Master Thesis
Title: Scheduling for VGOS Twin-Telescopes
Authors: Gnilsen, Paul
Abstract: The technique of Very Long Baseline Interferometry (VLBI) allows the estimation of all five Earth Orientation Parameters (EOP), the International Celestial Reference Frame (ICRF) and it is a primary contributor to the International Terrestrial Reference Frame (ITRF), in particular with information about its scale. The International VLBI Service for Geodesy and Astrometry (IVS) aims at an improvement of accuracies for the next generation VLBI system by one order of magnitude, as compared to today’s level. This concerns the accuracies of the station positions and velocities that should be achieved at the 1 mm and 0.1 mm/year level, respectively, within the next years. Therefore a concept has been developed which was called VLBI2010 and then VLBI Global Observing System (VGOS). To reach these ambitious aims new VLBI Twin Telescopes (TT) are built next to already existing radio telescopes. The smaller TT, which are faster in their slewing movement, shall contribute to the goals of VGOS by an increasing number of scans and observations per site at a time. This study covers the utilisation of TT and goes into more detail about suchlike stations at the sites of Onsala in Sweden and Wettzell in Germany, which are in the works and are already built respectively. Therefore a global VLBI campaign named CONT11, which was held in September 2011, is rescheduled and simulated to compare the results between the subjoined TT and all other thirteen participating stations from this network of telescopes. As expected the distribution and absolute number of scans and observations in conjunction with these TT surpass the other antennas. Also the differences between simulated and estimated zenith delays are smaller for TT. However, baseline length repeatabilities derived from Monte Carlo simulations do not yield improved values for TT for the scheduling strategies tested in this thesis. Consequently more research for scheduling Twin Telescopes is required.
Keywords: Grundläggande vetenskaper;Geovetenskap och miljövetenskap;Basic Sciences;Earth and Related Environmental Sciences
Issue Date: 2016
Publisher: Chalmers tekniska högskola / Institutionen för rymd- och geovetenskap
Chalmers University of Technology / Department of Earth and Space Sciences
Collection:Examensarbeten för masterexamen // Master Theses

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.