Quantum Optimization of Physician Scheduling For Maximal Healthcare Capacity

dc.contributor.authorLarsson, Nathalie
dc.contributor.authorKanerot, Sonja
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.examinerFabian, Martin
dc.contributor.supervisorFabian, Martin
dc.date.accessioned2025-06-24T14:30:14Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractPhysician scheduling is a critical challenge in healthcare systems, demanding a balance between operational efficiency, fairness, and individual preferences. This thesis investigates the use of quantum computing, specifically the Quantum Approximate Optimization Algorithm (QAOA), as a novel approach to solving the Physician Scheduling Problem (PSP), a known combinatorial optimization task. Classical methods, Mixed Integer Linear Programming (MILP) with Gurobi and Satisfiability Modulo Theories (SMT) with Z3, are implemented as benchmarks and used to establish feasible, constraint-satisfying solutions. The PSP is formulated as a Quadratic Unconstrained Binary Optimization (QUBO) problem, which serves as input to the QAOA algorithm. This is then executed on both quantum simulators and IBM’s real quantum hardware. A modular scheduling framework is developed to encode fairness, availability, preferences, and contractual work extent into the objective functions, enabling both short- and long-term optimization scenarios. Comparative evaluations reveal that while classical solvers consistently yield feasible schedules, QAOA demonstrates potential for competitive solution quality despite current hardware limitations.
dc.identifier.coursecodeEENX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309659
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectphysician scheduling
dc.subjectquantum optimization
dc.subjectQAOA
dc.subjectconstraint satisfaction
dc.subjectGurobi
dc.subjectZ3
dc.subjectQUBO
dc.subjecthealthcare operations
dc.subjecthybrid solvers
dc.titleQuantum Optimization of Physician Scheduling For Maximal Healthcare Capacity
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
QMaxH_Cap_Report (2).pdf
Storlek:
2.04 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: