Manufacturability assessment of an additively manufactured heat exchanger

Date

Type

Examensarbete för masterexamen
Master's Thesis

Model builders

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Abstract Texel Energy Storage, a start-up based in Gothenburg, is collaborating with the US Department of Energy, Savannah River National Laboratory, and Curtin University in Australia to develop a revolutionary energy storage technology that competes directly with fossil fuels when combined with renewable energy sources. The goal of this thesis is to evaluate the feasibility of manufacturing Texel’s future system’s heat exchanger, while also enhancing our understanding of design for AM and the associated costs and time requirements. This master thesis aims to explore the process of assessing the time and cost involved in designing and manufacturing the heat exchanger. However, it solely focuses on the redesign and assessment of one part of Texel’s system and does not consider the entire product development process. The final model design will incorporate Design for Additive Manufacturing, and manufacturability assessment based on time & cost estimation for the newly designed heat exchanger in the case study, along with the base methods described in the theory chapter. This thesis will evaluate the degree of manufacturability based on the time and cost required for designing and manufacturing the heat exchanger in Texel’s system, considering the economic aspects of AM. The theory for the method for the manufacturability assessment of the heat exchanger component will be described separately. As per the thesis, the majority of costs associated with producing a metal additive manufacturing heat exchanger occur during the processing phase, which is consistent with previous research on metal AM part production.

Description

Keywords

Keywords: Additive manufacturing, Heat exchanger, Manufacturability

Citation

Architect

Location

Type of building

Build Year

Model type

Scale

Material / technology

Index

Endorsement

Review

Supplemented By

Referenced By