Exploration Strategies for Homeostatic Agents: Continuous and dynamic exploration for homeostatic regulation using deep reinforcement learning

Publicerad

Typ

Examensarbete för masterexamen

Program

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

This paper introduces and evaluates four novel exploration strategies for homeostatic agents. Homeostatic agents have the objective of keeping some internal variables as close to a predetermined optimum as possible. Reinforcement learning is used for decision making, and the agents are given access to the optimal and acceptable values of the internal variables, giving greater flexibility for exploration and better survival chances. The new exploration strategies that utilise the internal variables are evaluated in a range of environments, showing them to outperform common reinforcement learning exploration techniques where these variables are not taken into consideration.

Beskrivning

Ämne/nyckelord

artificial general intelligence, multi-objective reinforcement learning, exploration, homeostatic regulation, animat, homeostatic exploration

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced