Ideology and Power Identification in Parliamentary Debates

dc.contributor.authorJiremalm, Johan
dc.contributor.authorPalmqvist, Oscar
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerJohansson, Moa
dc.contributor.supervisorPicazo-Sanchez, Pablo
dc.date.accessioned2025-01-08T11:48:26Z
dc.date.available2025-01-08T11:48:26Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractPolitical debates are vital in shaping public opinion and influencing policy decisions. However, understanding the complex linguistic structures used by politicians to ascertain their orientations and power dynamics can be challenging. In this paper we explore Natural Language Processing techniques for identifying political orientation and power structures in parliamentary debates. We introduce a Located Missing Labels-loss in order to train jointly to predict both power and ideology. Furthermore, our proposed method also trains to predict a third synthetically generated polarity label. Finally, we combine this training method with pre-processing steps including back-translation and meta data inclusion. Our results show that our method manages to improve upon conventional methods of fine-tuning. We take part in the Touché competition as part of CLEF 2024 and find that our method achieves the highest performance out of all participants [1]. Keywords: Political
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309055
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectPolitical Classification
dc.subjectNLP
dc.subjectLLM
dc.subjectMLML
dc.titleIdeology and Power Identification in Parliamentary Debates
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeData science and AI (MPDSC), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 24-49 JJ OP.pdf
Storlek:
4.02 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: