Leveraging Large Language Models For System Log Analysis - Fault Troubleshooting Radio Units Using Log Data

dc.contributor.authorNir, Jacob
dc.contributor.authorSnäll, William
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerDamaschke, Peter
dc.contributor.supervisorHaghir Chehreghani,, Morteza
dc.date.accessioned2025-01-03T13:35:19Z
dc.date.available2025-01-03T13:35:19Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractThis thesis investigates the application of large language models (LLMs) for system log analysis, specifically focusing on fault troubleshooting in radio units using log data. The primary objective is to enhance the efficiency and accuracy of system monitoring tools through state-of-the-art AI techniques. The research explores the utilization of retrieval-augmented generation (RAG) frameworks and parameterefficient fine-tuning (PEFT) methods to process and summarize log data. By employing pre-trained models such as Llama2, Llama3 and Mistral, the study evaluates different implementations to summarize segments of logs as well as extracting relevant information from them. The findings demonstrate that LLMs can significantly automate and improve the analysis of system logs, providing insights and facilitating easier troubleshooting. Additionally, the study examines the impact of enriching chatbot input data with contextual information, leading to substantial performance improvements in specialized domains. Despite the promising results, the research acknowledges limitations related to the quality and structure of log data and the need for source-specific refinements in context-enrichment methods. The contributions of this thesis are twofold: it presents a viable approach to leveraging LLMs for easier system monitoring and highlights the critical role of context in enhancing chatbot functionalities. Future research directions include integrating more advanced models, fine tuning existing models and exploring other state-of-theart methods to optimize retrieval-augmented generation pipelines.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309048
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectAI
dc.subjectArtificial Intelligence
dc.subjectLarge Language Models
dc.subjectGenerative AI
dc.subjectSystem Logs
dc.titleLeveraging Large Language Models For System Log Analysis - Fault Troubleshooting Radio Units Using Log Data
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeEngineering mathematics and computational science (MPENM), MSc
local.programmeComplex adaptive systems (MPCAS), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 24-38 JN WS.pdf
Storlek:
7.23 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: