Quantum Models for Word- Sense Disambiguation

dc.contributor.authorHoffmann, Thomas
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysiksv
dc.contributor.examinerGranath, Mats
dc.contributor.supervisorDobnik, Simon
dc.contributor.supervisorGranath, Mats
dc.contributor.supervisorFitzek, David
dc.date.accessioned2021-06-23T06:39:31Z
dc.date.available2021-06-23T06:39:31Z
dc.date.issued2021sv
dc.date.submitted2020
dc.description.abstractIn recent years, developments in machine learning had a tremendous impact on Natural Language Processing (NLP). However, state-of-the-art language models contain billions of parameters that require vast computational resources for optimization and capture syntactic rules only from data, which does not allow an extensive analysis of the underlying logic of language. Hence, to reduce the parameter space of NLP models and close the gap between logic-based language models and statistical vector space models, Coecke, Sadrzadeh, and Clark [11] introduce a compound framework called Compositional Distributional Model of Meaning, based on Lambeks Pregroup grammar and Quantum Theory. This thesis investigates applying the Compositional Distributional Model of Meaning on the word-sense disambiguation task by Kartsaklis, Sadrzadeh, and Pulman [18]. Different quantum embeddings are evaluated in terms of disambiguation power, given a matching context. One focus lies on the description of ambiguous words as mixed states. Mixed states are probabilistic quantum states expressed as density matrices which entail a lack of knowledge about the underlying system. Empirical data was gathered from experiments using quantum circuits and classical computations. We evaluate the performance and discuss the challenges and limitations of the current quantum computing models. The results confirm the comprehensiveness of the Compositional Distributional Model of Meaning and show statistical indications for a richer representation of words by density matrices.sv
dc.identifier.coursecodeTIFX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/302687
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectQuantum Natural Language Processing (QNLP)sv
dc.subjectCompositional Distributional Model of Meaningsv
dc.subjectWord-Sense Disambiguationsv
dc.subjectQuantum Computingsv
dc.titleQuantum Models for Word- Sense Disambiguationsv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_thesis_Thomas_Hoffmann.pdf
Storlek:
1.18 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: