Automatic extractive single document summarization An unsupervised approach

dc.contributor.authorBengtsson, Jonatan
dc.contributor.authorSkeppstedt, Christoffer
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data- och informationsteknik (Chalmers)sv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineering (Chalmers)en
dc.date.accessioned2019-07-03T13:07:46Z
dc.date.available2019-07-03T13:07:46Z
dc.date.issued2013
dc.description.abstractThis thesis describes the implementation and evaluation of a system for automatic, extractive single document summarization. Three different unsupervised algorithms for sentence relevance ranking are evaluated to form the basis of this system. The first is the well established, graph based TextRank, the second is based on K-means clustering and the third on one-class support vector machines (SVM). Further more, several different variations of the original approaches are evaluated. These algorithms are, in themselves, language independent, but language dependent text preprocessing is needed to use them in this setting. Evaluations of the system, using the de facto standard ROUGE evaluation toolkit, shows that TextRank obtains the best score. The K-means approach gives competitive results, beating the predefined baselines on the main test corpus. The one-class SVM yields the worst performance of the three, but still manage to beat one of two baselines. The system is evaluated for both English and Swedish, however, the main evaluation is done for short news articles in English. In our opinion this system, together with domain specific boosting provides adequate results for the corpora tested.
dc.identifier.urihttps://hdl.handle.net/20.500.12380/174136
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectData- och informationsvetenskap
dc.subjectComputer and Information Science
dc.titleAutomatic extractive single document summarization An unsupervised approach
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
dc.type.uppsokH
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
174136.pdf
Storlek:
1.04 MB
Format:
Adobe Portable Document Format
Beskrivning:
Fulltext