Insight Into Driver Behavior and Usage of ADAS Functions Using Machine Learning

dc.contributor.authorPsychountak, Margarita Antonia
dc.contributor.authorRajendra Pai, Rajath
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerPanahi, Ashkan
dc.contributor.supervisorPanahi, Ashkan
dc.date.accessioned2025-07-02T11:58:45Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractAdvanced Driver Assistance Systems (ADAS) is a technology that prevents road accidents and improves driving safety. Front-Short Range Assist is a newly released function that alerts drivers of any vulnerable road users in the front area of the truck when it is moving at low speed. This thesis aims to analyze and predict the deactivation of this function by the drivers, using recorded vehicle data from trucks and external weather and road type data. Several models were utilized to answer these questions: CNN, LSTM, a hybrid CNN-LSTM, and a Bi-LSTM autoencoder. The hybrid model achieved the highest performance. However, all models yielded poor predictive power, making it unclear whether the given dataset has a discernible pattern to predict and understand the reasons behind the deactivation.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309856
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectData science
dc.subjectMachine learning
dc.subjectLTSM
dc.subjectCNN
dc.subjectADAS
dc.subjectDeep learning
dc.titleInsight Into Driver Behavior and Usage of ADAS Functions Using Machine Learning
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeData science and AI (MPDSC), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 24-139 MAP RRP.pdf
Storlek:
9.99 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: