Improving Genome Scale Metabolic Models using Gene Regulatory Networks

Publicerad

Typ

Examensarbete för masterexamen
Master's Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

This thesis aims to enhance Genome Scale Metabolic Models (GEMs) by integrating Gene Regulatory Networks (GRNs) to improve modeling capabilities for the yeast Saccharomyces cerevisiae. The project involved constructing a pipeline to incorporate gene expression data into GEMs, resulting in a constrained metabolic model with a more diverse and characteristic flux distribution. By utilizing transcription data and transcription factor interactions, the integration aims to provide a more comprehensive understanding of cellular processes. The research demonstrates that incorporating GRNs can enhance the predictive accuracy of GEMs, despite the challenges associated with data complexity and integration methodologies. Potential future work includes upgrading the GRN to a dynamic Bayesian network and exploring the effects of network size on model outcomes.

Beskrivning

Ämne/nyckelord

Genome Scale Metabolic Models, GEM, Gene Regulatory Network, GRN, Co-Regulation, Gene Expression, Machine Learning, Decision Trees, Random Forest.

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced