Data-Driven Decision-Support for Maintenance Operations in Stacking Battery Production

dc.contributor.authorJannu, Sourav Uday
dc.contributor.authorJagadish, Yadhunandan Mallohalli
dc.contributor.departmentChalmers tekniska högskola / Institutionen för industri- och materialvetenskapsv
dc.contributor.departmentChalmers University of Technology / Department of Industrial and Materials Scienceen
dc.contributor.examinerSkoogh, Anders
dc.contributor.supervisorBokrantz, Jon
dc.contributor.supervisorLarsson, Oscar
dc.date.accessioned2024-06-27T11:30:27Z
dc.date.available2024-06-27T11:30:27Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractIn the contemporary landscape of battery production, the integration of data-driven predictive maintenance strategies stands out as a pivotal enhancement to operational efficiency and equipment reliability. This study focuses on the predictive maintenance of the stacking process in lithium-ion battery (LiB) production, a critical phase with a significant impact on total productivity of the organisation, due to frequent downtimes associated with the stacking cutting module. Utilizing a CRISP-DM framework within the mixed methods research methodology , this thesis examines the practical implementation of predictive maintenance by analyzing historical data and conducting qualitative research through workshops and literature review. The research highlights the critical role of data quality and availability in the successful application of machine learning models for enabling predictive maintenance. Key findings suggest that while the potential for data-driven maintenance to improve operational efficiency is substantial, significant challenges remain in data collection, system integration, and aligning technological advancements with organizational goals. This study contributes to the body of knowledge by outlining a structured approach in implementing predictive maintenance in battery manufacturing and providing insights into the technical considerations necessary for leveraging Industry 4.0 technologies effectively. The thesis supports industry practitioners in transitioning towards data-driven decision-support for enabling predictive maintenance models, thereby enhancing the sustainability and competitiveness of battery production facilities.
dc.identifier.coursecodeIMSX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/308085
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectBattery manufacturing
dc.subjectPredictive maintenance
dc.subjectData-driven approach
dc.subjectSensor data
dc.subjectMachine learning
dc.subjectStacking
dc.titleData-Driven Decision-Support for Maintenance Operations in Stacking Battery Production
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeProduction engineering (MPPEN), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Data_Driven_Decision_Support_for_Maintenance_Operations_in_Stacking_Battery_Production.pdf
Storlek:
1.91 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: