Deep Dynamic Graphical Models for Molecular Kinetics
Publicerad
Författare
Typ
Examensarbete för masterexamen
Master's Thesis
Master's Thesis
Modellbyggare
Tidskriftstitel
ISSN
Volymtitel
Utgivare
Sammanfattning
With the massive growth of molecular dynamics simulation results comes a great demand for efficient analysis methods to distill essential information from simulation and enable quantitative characterization of molecular properties. Dynamic
Graphical Model (DGM) is currently the most data-efficient method towards this goal. However, DGMs rely on extensive manual intervention by experts: division of molecules into smaller subsystems and their discretization into an unknown number of states. We aim to automate this expert-guided procedure using a deep-learning approach and make an end-to-end learning system. To achieve this, we examine the Variational Approach to Markov Processes (VAMP), and its ability to detect meta-stable subsystems in molecular systems, and to decide the number of states for each subsystem. We put forward a model which uses VAMP to learn subsystem states via a deep neural network and DGM to connect the subsystems by modeling their time-correlated dynamics. The model is trained in an end-to-end manner and optimized using a weighted sum of VAMP loss, DGM loss, and regularizer. We also introduce a pruning-based algorithm to automatically decide the number of states per subsystem. Our results show that VAMP is suitable for enumerating subsystems of a molecular system, however, VAMP alone cannot decide the number of states for each subsystem. This thesis sheds light on how an end-to-end learning system may be built with DGMs to analyze molecular dynamics and outlines possible future extensions of this work.
Beskrivning
Ämne/nyckelord
Machine learning, Molecular Simulation Analysis, Dynamic Graphic Models, Variational Approach to Markov Processes