Malware Classification using Locality Sensitive Hashing and Neural Networks

dc.contributor.authorFriborg, Ludwig
dc.contributor.authorPeiser, Stefan Carl
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.examinerHORKOFF, JENNIFER
dc.contributor.supervisorSCANDARIATO, RICCARDO
dc.date.accessioned2019-08-21T12:51:14Z
dc.date.available2019-08-21T12:51:14Z
dc.date.issued2019sv
dc.date.submitted2019
dc.description.abstractIn this thesis, we explore the idea of using locality sensitive hashes as input features to a feedforward neural network to perform static analysis to detect JavaScript malware. An experiment is conducted using a dataset containing 1.5M evenly distributed benign and malicious samples provided by the anti-malware company Cyren, which is the industry collaborator for this thesis. Four different locality sensitive hashing algorithms are tested and evaluated: Nilsimsa, ssdeep, TLSH, and SDHASH. The results show a high prediction accuracy of 98.05% and low false positive and negative rates of 0.94% and 2.69% for the best performing models. These results show that LSH based neural networks are a competitive option against other state-of-the-art JavaScript malware classification solutions.sv
dc.identifier.coursecodeDATX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/300149
dc.language.isoengsv
dc.setspec.uppsokTechnology
dc.subjectlocality sensitive hashingsv
dc.subjectstatic analysissv
dc.subjectmalware detectionsv
dc.subjectartificial neural networkssv
dc.subjectmachine learningsv
dc.subjectfeature extractionsv
dc.titleMalware Classification using Locality Sensitive Hashing and Neural Networkssv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 19-37 CPL Friborg Peiser.pdf
Storlek:
908.37 KB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: