Modeling Protein-Ligand Binding Affinity Using Graph Neural Networks: Integrating Molecular Interactions and Physics-Based Properties

dc.contributor.authorLi, Wilson
dc.contributor.authorWei, Yuan
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerEngkvist, Ola
dc.contributor.supervisorGraell II Amat, Alexandre
dc.date.accessioned2025-10-06T13:53:19Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractPredicting protein-ligand binding affinity has always been one of the primary challenges in drug discovery. Though many machine learning approaches have been applied and reached substantial progress, despite advancements, the accurate prediction by integrating molecular interactions and physics-based properties of ligands and proteins remains challenging. In this project, we present a graph neural networks (GNNs)-based framework for predicting protein–ligand binding affinity, using publicly accessible CrossDocked2020 dataset. Our project compares three message-passing architectures—Linear, Set Transformer Aggregation (STA), and Graph Attention Network (GAT). Our best model achieves performance of Pearson’s R ≈ 0.79 and Kendall’s τ ≈ 0.58. We present a practical GNNs-based framework with plausible binding affinity prediction capabilities, designed to effectively differentiate correct poses from incorrect ones.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310596
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectprotein–ligand binding affinity
dc.subjectgraph neural networks
dc.subjectmolecular interaction
dc.subjectmachine learning
dc.subjectdeep learning
dc.subjectdrug discovery
dc.titleModeling Protein-Ligand Binding Affinity Using Graph Neural Networks: Integrating Molecular Interactions and Physics-Based Properties
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 25-08 WL YW.pdf
Storlek:
19.32 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: