Exploring Ensemble Learning Techniques for Ranking Project Proposals at HILTI

dc.contributor.authorFolkesson, Filip
dc.contributor.authorHashemi, Rojan
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerAngelov, Krasimir
dc.contributor.supervisorCherubini, Felix
dc.date.accessioned2025-05-21T12:05:23Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractEnsemble learning is a class of machine learning techniques that utilizes an ensemble of models to make a prediction. For an ensemble model to perform well it is important that the models in the ensemble are diverse, i.e. they make errors in different places. There are many different methods to achieve diverse ensembles which are being evaluated in this paper based on how well they can predict future sales of construction projects using data given in the project proposal. Furthermore, SHAP values will be used to explain the model in order to increase understanding of what the most important variables are. A new technique to determine the prediction interval for different parts of the input space for risk assessment is also presented.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309317
dc.language.isoeng
dc.relation.ispartofseriesCSE 24-132
dc.setspec.uppsokTechnology
dc.subjectEnsemble learning, ensemble regression, variable importance, sales prediction
dc.titleExploring Ensemble Learning Techniques for Ranking Project Proposals at HILTI
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComputer science – algorithms, languages and logic (MPALG), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 24-132 FF RH.pdf
Storlek:
2.35 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: