Data Hide and Seek is Over!

dc.contributor.authorAndersson, Oskar
dc.contributor.authorÄrlig, Otto
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.examinerSjöberg, Jonas
dc.contributor.supervisorDashti, Nastaran
dc.date.accessioned2025-07-02T09:27:52Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractA complete pipeline is presented for automatic annotation and retrieval of multimodal vehicle data, using synchronized front-facing camera images and LiDAR point clouds. Driving scenes are classified across four categories: road condition, road type, lighting, and visibility. A dataset of 1,878 one-minute segments is constructed from over 200 hours of real-world driving. Segments are manually labeled to provide ground-truth annotations for training and evaluation, and selected to ensure an even distribution across all scenario categories. Separate models are trained for each sensor: a VGG19-based CNN for image classification and a lightweight PointNet for LiDAR point clouds. The best-performing vision model achieves strong results across all categories, while the LiDAR model performs best on road condition and visibility. A fusion model, implemented as a small multilayer perceptron, combines outputs from both sensors and outperforms the individual models, particularly on more difficult scenarios and categories. Sequence-level aggregation of predictions is applied to reduce frame-level variation and improve accuracy. A proof-of-concept data retrieval interface is also presented, enabling users to filter and inspect data based on predicted labels and confidence scores, and to explore both camera images and LiDAR point clouds for each retrieved segment.
dc.identifier.coursecodeEENX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309848
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectAutomatic Annotation
dc.subjectMultimodal
dc.subjectCamera
dc.subjectLiDAR
dc.subjectCNN
dc.subjectPointNet
dc.subjectData Retrieval
dc.titleData Hide and Seek is Over!
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeSystems, control and mechatronics (MPSYS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
MSc_Thesis_Report_Otto_Oskar_14_06_2025.pdf
Storlek:
2.34 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: