Adaptive Control of Thermal System in Electrified Heavy Vehicles - Investigation in how adaptive parameters used in predictive control can minimize model prediction errors

dc.contributor.authorAndersson, Mats
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.examinerWik, Torsten
dc.contributor.supervisorLindgärde, Olof
dc.date.accessioned2024-10-28T09:08:34Z
dc.date.available2024-10-28T09:08:34Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractAbstract The development of battery electrical heavy vehicles is an important factor in reaching climate change goals and increasing the standard of living by reducing emissions and noise pollution. The cooling system serves as a crucial component for keeping parts in their ideal operating window which reduces wear, as well as increases performance. Applying predictive control to these vehicles is another step in improving performance with reduced power consumption and increased life expectancy of components. This work investigates the possibility of applying adaptive parameters to be used in predictive controllers to improve predictive estimates and thus also the control. We use estimation techniques, such as recursive least squares (RLS) and extended Kalman filtering (EKF) to estimate the adaptive parameters that can be fed back to a supervising controller, such as a model predictive controller (MPC). Results show that using adaptive parameters improves predictions with reduced prediction errors. The results indicate the possibility of accuracy improvements that combined with improved control structure could lead to better performance.
dc.identifier.coursecodeEENX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/308947
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectKeywords: Adaptive control, Predictive control, Thermal management, EKF, RLS.
dc.titleAdaptive Control of Thermal System in Electrified Heavy Vehicles - Investigation in how adaptive parameters used in predictive control can minimize model prediction errors
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeSystems, control and mechatronics (MPSYS), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_thesis_MatsAndersson_final.pdf
Storlek:
3.4 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: