AI Forecasting for Enhanced Energy Flexibility in Supermarket Refrigeration Systems

dc.contributor.authorHallberg, Elias
dc.contributor.authorWidén, Samuel
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerPanahi, Ashkan
dc.contributor.supervisorMalekipirbazari, Milad
dc.date.accessioned2025-04-30T10:07:11Z
dc.date.issued
dc.date.submitted
dc.description.abstractDue to the rising misalignment between energy supply and demand, energy flexibility is becoming more relevant. Because supermarket refrigeration systems consume a lot of energy, and their innate ability to act as thermal energy storage, they are a prime candidate to utilize for energy flexibility. This thesis focuses on exploring new parameters which could be used to improve the performance of short term load forecasting models for supermarket refrigeration systems, thereby improving the ability to utilize them for energy flexibility. In addition to this, it compares the performance of multiple different machine learning models. The thesis demonstrates that parameters that have not previously been utilized for short term load forecasting of supermarket refrigeration systems, such as Google’s popular times graph, can successfully be used to improve prediction accuracy.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309299
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectcomputer science, engineering, machine learning, refrigeration, load forecasting, energy flexibility, AI
dc.titleAI Forecasting for Enhanced Energy Flexibility in Supermarket Refrigeration Systems
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeData science and AI (MPDSC), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 24-138 EH SW.pdf
Storlek:
1.61 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: