Traffic Prediction in Automated Guided Vehiclular Systems using Graph Neural Networks

dc.contributor.authorVelayutham, Shivneshwar
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerSchiller, Elad
dc.contributor.supervisorSchiller, Elad
dc.contributor.supervisorÅkerlund, Rasmus
dc.date.accessioned2025-09-10T06:52:16Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractAutomated Guided Vehicle (AGV) systems play a critical role in modern warehouses by automating the movement of goods along set paths. This thesis investigates how to predict traffic and congestion within these systems, focusing on estimating wait times at various points in the network. We apply Graph Neural Networks (GNNs), specifically Relational Graph Convolutional Networks (RGCNs) and Relational Graph Attention Networks (RGATs), to forecast traffic conditions. Our approach leverages a unique dataset of 50 different warehouse layouts, incorporating detailed vehicle movement simulations and traffic rules defined by fleet managers. This dataset allows us to model complex interactions and constraints affecting vehicle flow in indoor warehouses. The results demonstrate that RGCNs effectively predict and classify wait times, achieving an F1 score of 0.94 with a quick inference time of 0.01 seconds. These findings enhance the planning and management of AGV systems by providing accurate predictions of traffic conditions, facilitating better design adjustments and reducing delays. Keywords:
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310439
dc.language.isoeng
dc.relation.ispartofseriesCSE-24-156
dc.setspec.uppsokTechnology
dc.subjectTraffic, Graph Neural Networks, Automated Guided Vehicle, Relational Graph Convolutional Networks, Relational Graph Attention Networks, F1 score, dual graphs, multi-relational graphs, blocking, congestion.
dc.titleTraffic Prediction in Automated Guided Vehiclular Systems using Graph Neural Networks
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComputer systems and networks (MPCSN), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 24-156 SV.pdf
Storlek:
1.26 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: