Abstractive Document Summarisation using Generative Adversarial Networks

Typ
Examensarbete för masterexamen
Master Thesis
Program
Publicerad
2018
Författare
Svensson, Karl
Modellbyggare
Tidskriftstitel
ISSN
Volymtitel
Utgivare
Sammanfattning
The use of automatically generated summaries for long texts is commonly used in digital services. In this thesis, one method for such document summarisation is created by combining existing techniques for abstractive document summarization with LeakGAN – a successful approach at text generation using generative adversarial networks (GAN). The resulting model is tested on two different datasets originating from conventional newspapers and the world’s largest online community: Reddit. The datasets are examined and several important differences are highlighted. The evaluations show that the summaries generated by the model do not correlate with the corresponding documents. Possible reasons are discussed and several suggestions for future research are presented.
Beskrivning
Ämne/nyckelord
Matematik, Mathematics
Citation
Arkitekt (konstruktör)
Geografisk plats
Byggnad (typ)
Byggår
Modelltyp
Skala
Teknik / material