Piecewise Diffusive Score-based Generative Model

dc.contributor.authorLu, Qiba
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.examinerRingh, Axel
dc.contributor.supervisorSharma, Akash
dc.date.accessioned2025-09-15T08:57:59Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractDiffusion-based generative models have achieved remarkable success across a range of applications. However, their performance often degrades in the presence of imbalanced data. To address this limitation, we introduce a novel generative modeling framework that combines stochastic differential equation (SDE) driven by Brownian noise with Poisson random measures. We also provide the explicit form of reverse SDE, with corresponding loss function to train the neural network. Our experimental results show that the model with Poisson jump outperforms the model without jump across various toy datasets and a small subset of CIFAR-10.
dc.identifier.coursecodeMVEX03
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310480
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectDiffusion model, generative model, stochastic differential equations, random measures.
dc.titlePiecewise Diffusive Score-based Generative Model
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeData science and AI (MPDSC), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Masters Thesis_Qiba Lu_2025.pdf
Storlek:
3.05 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: