Exploring the Evolution of Multi-Agent Emergent Languages through Neural Iterated Learning

dc.contributor.authorDai, Muyao
dc.contributor.authorHu, Xiaolingzi
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerDubhashi, Devdatt
dc.contributor.supervisorThomas, Jonathan
dc.contributor.supervisorCarlsson, Emil
dc.date.accessioned2025-09-10T11:56:40Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractThis study investigates the use of Neural Iterated Learning (NIL) in generating compositional languages within symbolic data systems and complex image datasets, such as MNIST. Through experiments focused on vocabulary size, message length, and penalization, we demonstrate that NIL can effectively produce structured communication systems, achieving high topological similarity and accuracy, particularly when using SoftMax for decision-making, Reinforce as the optimization method, and LSTM as the underlying network architecture. As the penalty introduced on message length, the increment of length cost leads to more efficient agent communication, with shorter and more structured messages, supporting the Brevity Law. While NIL performs robustly in simpler settings, its ability to maintain compositionality declines with increased data complexity, as observed in the Colored MNIST experiments. The results indicate that compressible representations improve generalization. However, NIL’s performance in high-dimensional contexts is sensitive to input complexity, requiring refined feature extraction and training setups for improved stability and efficiency.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310451
dc.language.isoeng
dc.relation.ispartofseries2024
dc.setspec.uppsokTechnology
dc.subjectComputer Science, Neural Iterated Learning, Natural Language Processing, Reinforcement Learning, Emergent languages, Language Evolution, Communication Efficiency, Compositionality, Feature Extraction, MNIST.
dc.titleExploring the Evolution of Multi-Agent Emergent Languages through Neural Iterated Learning
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeEngineering mathematics and computational science (MPENM), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 24-178 XH MD.pdf
Storlek:
4.29 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: