Advancing Structural Batteries using Lithium-Iron Phosphate Functionalised High-Modulus Carbon Fibres Positive Electrodes

dc.contributor.authorMarchenko, Anastasiia
dc.contributor.authorKavatsiuk, Hlib
dc.contributor.departmentChalmers tekniska högskola / Institutionen för industri- och materialvetenskapsv
dc.contributor.departmentChalmers University of Technology / Department of Industrial and Materials Scienceen
dc.contributor.examinerAsp, Leif
dc.contributor.supervisorChaudhary, Richa
dc.contributor.supervisorXu, Johanna
dc.date.accessioned2024-06-27T08:31:42Z
dc.date.available2024-06-27T08:31:42Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractThis thesis explores the advancement of structural batteries by utilising nanosized lithium-iron phosphate functionalised high-modulus carbon fibres as positive electrodes. The innovative laminated structural battery architecture integrates active electrode materials with structural battery electrolyte, facilitating both mechanical load-bearing and ionic transport. We employed the electrophoretic deposition technique to coat CFs with a blend of nano-LFP, carbon black, and reduced graphene oxide in an ethanol suspension, enhanced by PDDA as a cationic polyelectrolyte. The study’s experimental phase optimised EPD parameters (70-80 V for 5-20 minutes), achieving uniform coatings with active material mass ranging between 12-35 mg. Electrochemical performance was evaluated through cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. Halfcell results demonstrated that positive electrodes with nanosized LFP and highmodulus CFs exhibit promising potential for structural batteries, showing specific capacities and stable cycling behaviour. However, all-fibre full cells indicated the necessity for further research. The integration of CB and rGO significantly improved the electronic con ductivity and structural stability of the electrodes, contributing to enhanced overall battery efficiency. This work highlights the potential of functionalised high-modulus CFs in advancing the field of structural batteries, addressing both energy storage and mechanical integrity, crucial for future applications in electric vehicles and other weight-sensitive technologies.
dc.identifier.coursecodeIMSX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/308077
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectstructural batteries
dc.subjectcarbon fibre composites
dc.subjectmultifunctional materials
dc.subjectlithium-ion batteries
dc.subjectelectrophoretic deposition
dc.titleAdvancing Structural Batteries using Lithium-Iron Phosphate Functionalised High-Modulus Carbon Fibres Positive Electrodes
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeNanotechnology (MPNAT), MSc
local.programmeMaterials chemistry (MPMCN), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Structural_Batteries_final.pdf
Storlek:
26.13 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: