Klassifikation av polygoner med trigonometriska egenfunktioner till Laplaceoperatorn under Dirichletrandvillkor

Typ
Examensarbete för kandidatexamen
Bachelor Thesis
Program
Publicerad
2019
Författare
Nordell, Henrik
Thim, Oliver
Blom, Max
Vahnberg, Jack
Modellbyggare
Tidskriftstitel
ISSN
Volymtitel
Utgivare
Sammanfattning
We consider the eigenstructure of the Laplace operator on triangles with the angles (60°, 60°,60°); (30°, 60°,90°) och (45°, 45°,90°). Using the earlier work by M. Práger (1998) and M. A. Pinsky (1980) we find eigenfunctions of the Laplace operator with Dirichlet boundary conditions. We show completeness of eigenfunctions in L2 for each triangle. Moreover, we present a result by Brian J. McCartin (2008) that classifies which polygons have a complete set of trigonometric eigenfunctions. These polygons are the triangles mentioned above, the rectangle and the square. We connect McCartins result to symmetries of lattices, crystals and Weyl groups. In 1980 Pierre H. Bérard studied the connection between different types of eigenfunctions and symmetries and proved that all alcoves of Weyl groups have trigonometric eigenfunctions. We point out the fact that in R2 the converse is also true. That is, all polygons with a complete set of trigonometric eigenfunctions are alcoves.
Beskrivning
Ämne/nyckelord
Grundläggande vetenskaper, Matematik, Basic Sciences, Mathematics
Citation
Arkitekt (konstruktör)
Geografisk plats
Byggnad (typ)
Byggår
Modelltyp
Skala
Teknik / material