Properties of Random Connected Edge Sets in Hypercubic Lattices

dc.contributor.authorBruksman Rzeczycki, Andrzej
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.examinerPalö Forsström, Malin
dc.contributor.supervisorPalö Forsström, Malin
dc.date.accessioned2025-09-08T10:40:48Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractFor a > 0, d = 2, 3, ..., and l = 0, 1, ..., we introduce a probability measure μₐ on a probability space Ω(l) consisting of connected edge sets in a d-dimensional hypercubic lattice, inspired by the two-point correlation function of the Ising model. We introduce a*ᵈ, the supremum of a such that μₐ is a well-defined probability measure. We show that a*ᵈ is independent of l. By means of bounding the number of elements in Ω from above, we establish the lower bound a*ᵈ > 1⁄(2d−1), and by means of constructing elements of Ω, we establish the upper bound a*ᵈ ≤ 1⁄d. The parameter a in our model plays a similar role as to that of tanh(β) in the two-point correlation function of the Ising model. As the Ising model undergoes a phase transition at the critical inverse temperature βᶜᵈ, we compare our bounds on a*ᵈ to tanh(βᶜᵈ), using values and approximations of βᶜᵈ found in literature. We find that tanh(βᶜᵈ) lies within our bounds on a*ᵈ. We relate the edge sets in our probability space Ω to the graph theoretic concepts of walks, trails, and paths, and bound the number of edge sets of length k in Ω in terms of number of such constructs of length k. In order to visualize the distribution, we employ the Metropolis-Hastings algorithm to simulate from μₐ in two dimensions constricted to a finite lattice.
dc.identifier.coursecodeMVEX03
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310433
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectProbability theory, hypercubic lattice, edge set, trail, Ising model
dc.titleProperties of Random Connected Edge Sets in Hypercubic Lattices
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeEngineering mathematics and computational science (MPENM), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_thesis_Andrzej Rzeczycki_2025.pdf
Storlek:
899.42 KB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: