Mechanical analysis methods for ultra-stiff CFRP from thin tapes

dc.contributor.authorPersson, Mattias
dc.contributor.departmentChalmers tekniska högskola / Institutionen för industri- och materialvetenskapsv
dc.contributor.departmentChalmers University of Technology / Department of Industrial and Materials Scienceen
dc.date.accessioned2019-07-05T11:52:25Z
dc.date.available2019-07-05T11:52:25Z
dc.date.issued2019
dc.description.abstractToday there is an increasing demand for more environmentally friendly transport systems. One way to decrease the fuel consumption of vehicles such as cars or airplanes is to decrease their weight. By replacing heavy construction material such as steel, which is often used in for example cars, with a material that has just as good mechanical properties as steel but a fraction of the weight, more fuel efficient vehicles could be made. A carbon fibre composite material, constructed out of uniformly distributed ultrathin high modulus carbon fibre reinforced polymer tapes, with mechanical properties approaching those of steel but with about a fifth of the density is the subject of study for this Master’s thesis. The focus of the study was to construct mechanical analysis methods, i.e. models for predicting the stiffness and the strength in tensile loading, for the composite material that was manufactured and tested in an accompanying study with this thesis work. The model was constructed in the numerical computation environment MATLAB an shows good agreement with the experimental results obtained from the tensile tests. The model predicts the stiffness, strength and failure modes most likely to occur in the laminate when loaded in tension. The model takes in-situ effects into account. The first test and analysis results indicate great potential for the composite material as it exhibits tremendous mechanical properties even before the manufacturing has been perfected. The model also indicate failure of the laminate to initiate by tape pull-out followed by longitudinal tape fracture, and that transverse tape fracture is unlikely to occur for the simulated laminates.
dc.identifier.urihttps://hdl.handle.net/20.500.12380/256750
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectMaterialvetenskap
dc.subjectProduktion
dc.subjectMaskinteknik
dc.subjectMaterialteknik
dc.subjectMaterials Science
dc.subjectProduction
dc.subjectMechanical Engineering
dc.subjectMaterials Engineering
dc.titleMechanical analysis methods for ultra-stiff CFRP from thin tapes
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
dc.type.uppsokH
local.programmeApplied mechanics (MPAME), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
256750.pdf
Storlek:
4.19 MB
Format:
Adobe Portable Document Format
Beskrivning:
Fulltext