Signal Processing Techniques for Step Counting, Activity Classification, and Distance Measurement Using a Single IMU

dc.contributor.authorWäneskog, Vendela
dc.contributor.authorWiklund, Alexander
dc.contributor.authorStrandlycke, Philip
dc.contributor.authorSillén, Lukas
dc.contributor.authorTörnkvist, David
dc.contributor.authorCarlsson, Gustav
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.departmentChalmers University of Technology / Department of Electrical Engineeringen
dc.contributor.examinerBrännström, Fredrik
dc.contributor.supervisorAmani, Elina
dc.date.accessioned2025-06-18T08:59:42Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractThe aim of this thesis was to develop and validate an offline method for monitoring human walking and running using a single, low-cost Inertial Measurement Unit (IMU). We designed signal-processing algorithms to count steps, estimate distance and speed, and classify activity level. All from the 3-axis accelerometer and gyroscope data. Raw signals were filtered with low-pass Finite Impulse Response (FIR) filter, zero-velocity updates were applied at each detected gait event and dominant stride frequencies were extracted via Fast Fourier Transform (FFT) over sliding windows. In test with five subject on a 75 m straight path, step-count accuracy averaged 98% for walking and 94% for running. The distance estimates reached 96% accuracy in walking and 91% in running. Activity classification achieved 100% accuracy in controlled trials and 89% in mixed scenarios.
dc.identifier.coursecodeEENX16
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309517
dc.language.isoeng
dc.relation.ispartofseries00000
dc.setspec.uppsokTechnology
dc.subjectInertial Measurement Unit (IMU)
dc.subjectsignal processing
dc.subjectgait analysis
dc.subjectdistance estimation
dc.subjectactivity classification
dc.subjectstep counting
dc.subjectZero-Velocity Update (ZUPT)
dc.titleSignal Processing Techniques for Step Counting, Activity Classification, and Distance Measurement Using a Single IMU
dc.type.degreeExamensarbete på kandidatnivåsv
dc.type.degreeBachelor Thesisen
dc.type.uppsokM2

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Kandidatarbete_Low_cost_IMU.pdf
Storlek:
2.68 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: