Analytic Continuation of Electronic Green’s Functions from Imaginary to Real Time using Maximum Entropy
dc.contributor.author | schött, johan | |
dc.contributor.department | Chalmers tekniska högskola / Institutionen för teknisk fysik | sv |
dc.contributor.department | Chalmers University of Technology / Department of Applied Physics | en |
dc.date.accessioned | 2019-07-03T13:35:49Z | |
dc.date.available | 2019-07-03T13:35:49Z | |
dc.date.issued | 2014 | |
dc.description.abstract | This thesis is mainly a computational work studying the analytical continuation of Green’s functions using the Maximum Entropy method. A strongly correlated electron system is described with the single-band Hubbard model and paramagnetic solutions are studied using Dynamic Mean Field Theory on a Bethe lattice. Continuous Time Quantum Monte Carlo is used as Impurity solver, for the infinite Anderson model at a finite temperature, to obtain the Matsubara single-particle Green’s function propagator. Both metallic and insulating spectral functions are obtained using the Maximum Entropy Method. General properties of the Maximum Entropy Method as an analytic continuation method from imaginary to real time are also discussed. | |
dc.identifier.uri | https://hdl.handle.net/20.500.12380/211758 | |
dc.language.iso | eng | |
dc.setspec.uppsok | PhysicsChemistryMaths | |
dc.subject | Energi | |
dc.subject | Grundläggande vetenskaper | |
dc.subject | Hållbar utveckling | |
dc.subject | Innovation och entreprenörskap (nyttiggörande) | |
dc.subject | Annan teknik | |
dc.subject | Energy | |
dc.subject | Basic Sciences | |
dc.subject | Sustainable Development | |
dc.subject | Innovation & Entrepreneurship | |
dc.subject | Other Engineering and Technologies | |
dc.title | Analytic Continuation of Electronic Green’s Functions from Imaginary to Real Time using Maximum Entropy | |
dc.type.degree | Examensarbete för masterexamen | sv |
dc.type.degree | Master Thesis | en |
dc.type.uppsok | H | |
local.programme | Applied physics (MPAPP), MSc |
Ladda ner
Original bundle
1 - 1 av 1
Hämtar...
- Namn:
- 211758.pdf
- Storlek:
- 970.03 KB
- Format:
- Adobe Portable Document Format
- Beskrivning:
- Fulltext