Latent Vector Synthesis

dc.contributor.authorHögberg, David
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerBjörk, Staffan
dc.contributor.supervisorTatar, Kıvanç
dc.date.accessioned2024-01-02T13:59:08Z
dc.date.available2024-01-02T13:59:08Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractGenerative deep learning models for sound synthesis applications have gathered interest recently that are able to generate novel sound material based on the characteristics of a given audio dataset. A subcategory of these models are variational autoencoders, which build generative latent spaces of audio where sounds are organised based on similarity. Although expressive uses of these models abound, questions around their practical applicability and aesthetic implications as part of an artistic process remain underexplored. This thesis investigates the technological and aesthetic affordances of latent audio spaces in the context of creative sound design and exploration. To this end, a sound synthesis tool in the form of a latent vector synthesizer is conceptualised and developed from a first-person research through design perspective. The prototype addresses issues around real-time playability of current machine learning models for sound generation by training a variational autoencoder on short samples of audio signals. The generated waveforms are incorporated as part of a wavetable- and vector synthesis engine that enables timbral interpolations and explorations of sonic textures. Positioned at the intersection of sonic art and audio technology the design implementation uncovers some latent potentials and affordances of new technologies for musical tasks.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307486
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectsound synthesis
dc.subjectvariational autoencoders
dc.subjectlatent audio spaces
dc.subjectvector synthesis
dc.subjectwavetable synthesis
dc.subjectresearch through design
dc.titleLatent Vector Synthesis
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 23-116 DH.pdf
Storlek:
3.47 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: