Neural networks for collision avoidance - Preliminary investigations of training neural networks using deep Q-learning and genetic algorithms for active safety functions
dc.contributor.author | Leiditz Thorsson, Jonathan | |
dc.contributor.author | Steinert, Olof | |
dc.contributor.department | Chalmers tekniska högskola / Institutionen för signaler och system | sv |
dc.contributor.department | Chalmers University of Technology / Department of Signals and Systems | en |
dc.date.accessioned | 2019-07-03T14:23:22Z | |
dc.date.available | 2019-07-03T14:23:22Z | |
dc.date.issued | 2016 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12380/244867 | |
dc.language.iso | eng | |
dc.relation.ispartofseries | Ex - Institutionen för signaler och system, Chalmers tekniska högskola : EX076/2016 | |
dc.setspec.uppsok | Technology | |
dc.subject | Elektroteknik och elektronik | |
dc.subject | Electrical Engineering, Electronic Engineering, Information Engineering | |
dc.title | Neural networks for collision avoidance - Preliminary investigations of training neural networks using deep Q-learning and genetic algorithms for active safety functions | |
dc.type.degree | Examensarbete för masterexamen | sv |
dc.type.degree | Master Thesis | en |
dc.type.uppsok | H | |
local.programme | Complex adaptive systems (MPCAS), MSc |
Ladda ner
Original bundle
1 - 1 av 1
Hämtar...
- Namn:
- 244867.pdf
- Storlek:
- 2.18 MB
- Format:
- Adobe Portable Document Format
- Beskrivning:
- Fulltext