Neural networks for collision avoidance - Preliminary investigations of training neural networks using deep Q-learning and genetic algorithms for active safety functions

dc.contributor.authorLeiditz Thorsson, Jonathan
dc.contributor.authorSteinert, Olof
dc.contributor.departmentChalmers tekniska högskola / Institutionen för signaler och systemsv
dc.contributor.departmentChalmers University of Technology / Department of Signals and Systemsen
dc.date.accessioned2019-07-03T14:23:22Z
dc.date.available2019-07-03T14:23:22Z
dc.date.issued2016
dc.identifier.urihttps://hdl.handle.net/20.500.12380/244867
dc.language.isoeng
dc.relation.ispartofseriesEx - Institutionen för signaler och system, Chalmers tekniska högskola : EX076/2016
dc.setspec.uppsokTechnology
dc.subjectElektroteknik och elektronik
dc.subjectElectrical Engineering, Electronic Engineering, Information Engineering
dc.titleNeural networks for collision avoidance - Preliminary investigations of training neural networks using deep Q-learning and genetic algorithms for active safety functions
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
244867.pdf
Storlek:
2.18 MB
Format:
Adobe Portable Document Format
Beskrivning:
Fulltext