Generating Radar Video Data Using Generative Adversarial Nets

dc.contributor.authorKauppinen, Martin
dc.contributor.authorOlsson, David
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysiksv
dc.contributor.examinerGranath, Mats
dc.contributor.supervisorNilsson, Sven
dc.date.accessioned2020-06-11T11:33:48Z
dc.date.available2020-06-11T11:33:48Z
dc.date.issued2020sv
dc.date.submitted2019
dc.description.abstractIn development of radar tools, for example machine learning for target classification and simulation of processing chains, there is a need for large amounts of complexvalued data recorded under real conditions by a radar. However, large and properly labelled data sets of this kind are time consuming and expensive to collect. Currently such applications instead use simulated data, or smaller sets of real recorded data, limiting the development of new applications. In this thesis, we investigate the possibility to utilise Generative Adversarial Nets (GANs) to extend existing radar data sets in order to get out of this low data regime. Existing techniques are combined and further developed for generating complex-valued radar data, with analysis of the quality of the generated data and its relevance. We conclude that in this context, GANs could be used to extend existing radar data sets, though more work is needed to make it perfectly realistic, which is non-trivial.sv
dc.identifier.coursecodeTIFX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/300833
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectneural networkssv
dc.subjectgenerative adversarial networkssv
dc.subjectradarsv
dc.subjectmachine learningsv
dc.subjectcomplex valuedsv
dc.titleGenerating Radar Video Data Using Generative Adversarial Netssv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
Ladda ner
Original bundle
Visar 1 - 1 av 1
Bild (thumbnail)
Namn:
Master_thesis_Olsson_Kauppinen.pdf
Storlek:
6.26 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Bild saknas
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: