Substructure Constrained Molecular Generation for Counterfactual Design: Transformer-Based Masked Language Modeling for Constrained Molecular Design in Drug Discovery

Publicerad

Typ

Examensarbete för masterexamen
Master's Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

In this thesis, masked modeling is used in de novo drug design to create substructureconstrained counterfactual molecules. Utilizing Natural Language Processing (NLP) methods, SMILES strings are processed through a transformer-based architecture. The research explores diverse masking and training strategies, demonstrating the ability to produce a wide range of relevant molecules. These strategies impact the properties of the molecules produced, showing that the choice of masking influences the molecular structures generated. Findings suggest that masking strategies must be carefully chosen based on the models intended use in molecule design. This work highlights the potential of masked modeling to effectively generate diverse molecules and enhance molecular drug design, opening possibilities for further exploration and application.

Beskrivning

Ämne/nyckelord

Machine Learning, Natural Language Processing, Cheminformatics, Transformers, Deep Learning, Molecular Design, Drug Discovery, Molecular Generation

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced