Sub-networks and Spectral Anisotropy in Deep Neural Networks

dc.contributor.authorGe, Hanwen
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.examinerJonasson, Johan
dc.contributor.supervisorGerken, Jan
dc.date.accessioned2025-04-14T12:39:40Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractDeep neural networks (DNNs) have achieved remarkable success across diverse domains, yet the fundamental reasons behind their efficacy and ability to generalize remain elusive. This thesis examines how over-parameterized DNNs learn and generalize by investigating two interconnected phenomena: the emergence of sparse, critical sub-networks (aligned with the Lottery Ticket Hypothesis) and the structural symmetry-breaking. Additionally, we explore the geometric structure of the parameter space, with a particular focus on the anisotropy of the Fisher Information Matrix (FIM) spectrum. We demonstrate that different layers in a deep network exhibit varying degrees of symmetry breaking, which we link to the presence of sub-networks that encapsulate the model’s core representational capacity. Using two distinct criteria—magnitudebased and change-based—we identify critical sub-networks and show that, despite the over-parameterization of DNNs, these sparse sub-networks play a central role in achieving high performance. By analyzing the spectrum of the FIM, we reveal that DNNs evolve along a limited number of dominant eigendirections, spanning a subspace where training dynamics converge. This finding highlights an intrinsic anisotropy in the parameter manifold. Furthermore, we investigate how this anisotropy correlates with the emergence of sub-networks and the internal structure of the subspace. Overall, this thesis provides a novel perspective on the roles of implicit regularization, loss landscape geometry, and sparse substructures in modern deep neural networks, offering insights into the geometric nature of DNNs.
dc.identifier.coursecodeMVEX03
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309268
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectDeep Neural Networks, Information Geometry, Generalization, Spectral Analysis, Lottery Ticket Hypothesis
dc.titleSub-networks and Spectral Anisotropy in Deep Neural Networks
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Hanwen Ge _2025.pdf
Storlek:
2.62 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: