Vascular Bifurcation Detection in Cerebral CT Angiography Using Convolutional Neural Networks and Frangi Filters

dc.contributor.authorJacobson, Nils
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysiksv
dc.contributor.examinerVolpe, Giovanni
dc.contributor.supervisorHellström, Jonna
dc.date.accessioned2021-02-18T11:47:43Z
dc.date.available2021-02-18T11:47:43Z
dc.date.issued2021sv
dc.date.submitted2020
dc.description.abstractSegmentation and feature extraction are important tools for analysing and visualizing information in medical image data, particularly in vascular image data which relates to widely spread vascular diseases. Vessel segmentation is extensively featured in research, recently adapting deep learning trends in image processing. This paper aims to develop a vessel bifurcation detection method to support a seed point based segmentation approach. The suggested approach is a combination of classification, with a convolutional neural network, local vessel segmentation, with Frangi filters, and 3D morphological skeletonization. A small data set is produced for network training and evaluation. Results indicate a high classification accuracy which filters problematic samples for the Frangi filter. Thus, the combination can suggest quality branch seed points under most circumstances. Next step would be to expand the data set to enable further optimization and more rigid evaluation. In any case a combination of a high-performance classifier followed by qualitative assessment of local samples show potential.sv
dc.identifier.coursecodeTIFX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/302212
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectCNNsv
dc.subjectCTAsv
dc.subjectDenseNetsv
dc.subjectVessel Segmentationsv
dc.subjectVessel Branchsv
dc.subjectVascular Bifurcation Detectionsv
dc.titleVascular Bifurcation Detection in Cerebral CT Angiography Using Convolutional Neural Networks and Frangi Filterssv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_s_Thesis_Report_Nils_Jacobson.pdf
Storlek:
3.63 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: