Learning to Play Games from Multiple Imperfect Teachers

Publicerad

Författare

Typ

Examensarbete för masterexamen
Master Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

This project evaluates the modularity of a recent Bayesian Inverse Reinforcement Learning approach [1] by inferring the sub-goals correlated with winning board games from observations of a set of agents. A feature based architecture is proposed together with a method for generating the reward function space, making inference tractable in large state spaces and allowing for the combination with models that approximate stateaction values. Further, a policy prior is suggested that allows for least squares policy evaluation using sample trajectories. The model is evaluated on randomly generated environments and on Tic-tac-toe, showing that a combination of the intentions inferred from all agents can generate strategies that outperform the corresponding strategies from each individual agent.

Beskrivning

Ämne/nyckelord

Data- och informationsvetenskap, Computer and Information Science

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced