Using Transformer-based Neural Networks for classifying cellular states in Glioblastoma

dc.contributor.authorHedberg, Ronja
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.examinerJörnsten, Rebecka
dc.contributor.supervisorJörnsten, Rebecka
dc.contributor.supervisorLozada Cortés, Alejandro
dc.date.accessioned2025-01-14T09:36:31Z
dc.date.available2025-01-14T09:36:31Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractBy taking inspiration from the progress made in Natural Language Processing with the use of Transformer-based Neural Networks, similar approaches have been proposed for single-cell RNA-sequencing data in hope of capturing complex gene-to-gene interactions. One such approach is the pre-trained single-cell bidirectional encoder (scBERT), whose architecture and pre-training follows its Natural Language counterpart, BERT. Unlike BERT, scBERT was pre-trained for masked gene expression prediction using single-cell datasets comprising over 1.5 million single-cell RNAsequencing profiles. This thesis performs an initial assessment of the use of scBERT with novel single-cell data. In classifying annotated cellular states of Glioblastoma, the inclusion of scBERT showed overall limited advantages compared to using the gene expression directly. However, through the simulation of different scenarios, this thesis provides preliminary evidence in favor of the use of scBERT in the lack of ample signal (low number of expressed genes, and scarce number of training examples). This showcases the potential benefits of using the gene representations of massive single-cell Transformer-based models, especially when little information is available, which is frequently the case when working with in-house data or heavily underrepresented cellular states.
dc.identifier.coursecodeMVEX60
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309083
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectMachine Learning, scRNA-seq, Transformer, Cellular states, Glioblastoma, Cancer, Natural Language Processing, Encoder.
dc.titleUsing Transformer-based Neural Networks for classifying cellular states in Glioblastoma
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Ronja Hedberg_2024.pdf
Storlek:
2.66 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: