Energy Optimized Driving Strategy Using Machine Learning

dc.contributor.authorChibani, Celine
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.examinerGrunditz, Emma
dc.date.accessioned2024-01-19T06:41:03Z
dc.date.available2024-01-19T06:41:03Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractThis project focuses on developing an energy-optimized adaptive cruise control (ACC) model for battery electric vehicles (BEVs) using the Deep Deterministic Policy Gradient (DDPG) algorithm. The study explores the potential of DDPG in creating an ACC system that maximizes energy efficiency while considering battery life. Battery modeling and degradation models are incorporated to evaluate the performance of the developed model. A comparison with an available Model Predictive Control (MPC) controller demonstrates improvements in capacity loss, energy efficiency, and reduction in cell temperature. However, challenges arise in striking a balance between reducing velocity and distance errors while minimizing current and energy consumption. This project provides a foundation for enhancing energy efficiency and battery life in ACC systems, but further refinement is necessary to ensure suitability for real-world applications. Limitations of the project include a loosened distance constraint and simplified environment and vehicle modeling. Future work involves parameter tuning, refining the reward function, and incorporating more realistic factors.
dc.identifier.coursecodeEENX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307530
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.titleEnergy Optimized Driving Strategy Using Machine Learning
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeElectric power engineering (MPEPO), MSc

Ladda ner

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: