Hexagonal Lattice Points on Circles

dc.contributor.authorMarmon, Oscar
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.departmentChalmers University of Technology / Department of Mathematical Sciencesen
dc.date.accessioned2019-07-03T12:00:09Z
dc.date.available2019-07-03T12:00:09Z
dc.date.issued2005
dc.description.abstractWe study the hexagonal lattice $\mathbb{Z}[\omega]$, where $\omega^6=1$. More specifically, we study the angular distribution of hexagonal lattice points on circles with a fixed radius. We prove that the angles are equidistributed on average, and suggest the possibilty of constructing a consistent discrete velocity model (DVM) for the Boltzmann equation, using a hexagonal lattice. Equidistribution on average is expressed in terms of cancellation in exponential sums. We introduce Hecke L-functions and investigate their analytic properties in order to derive estimates on sums of Hecke characters. Using a version of the Halberstam-Richert inequality, these estimates then yield the desired results for the exponential sums. As a further measure of equidistribution, we give a bound for the discrepancy.
dc.identifier.urihttps://hdl.handle.net/20.500.12380/24463
dc.language.isoeng
dc.relation.ispartofseriesPreprint - Department of Mathematical Sciences, Chalmers University of Technology and Göteborg University
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectMatematik
dc.subjectMathematics
dc.titleHexagonal Lattice Points on Circles
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
dc.type.uppsokH

Ladda ner