Predictive maintenance through data-driven decision making

dc.contributor.authorRezae, Rasul
dc.contributor.authorToulikas, Konstantions
dc.contributor.departmentChalmers tekniska högskola / Institutionen för industri- och materialvetenskapsv
dc.contributor.departmentChalmers University of Technology / Department of Industrial and Materials Scienceen
dc.contributor.examinerSkoogh, Anders
dc.contributor.supervisorBokrantz, Jon
dc.contributor.supervisorRajashekarappa, Mohan
dc.date.accessioned2024-09-17T12:05:56Z
dc.date.available2024-09-17T12:05:56Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractThis thesis investigates the deployment of Predictive Maintenance (PdM) systems and solutions at Parker Hannifin Manufacturing, a producer of control valves. PdM uses advanced analytics, machine learning algorithms, and real-time sensor data to predict maintenance needs before machine breakdowns occur. This approach contrasts with traditional preventive maintenance (PM), which follows predetermined schedules. The research aims to identify critical parameters for equipment monitoring, the necessary data infrastructure, and the potential cost benefits of PdM implementation. The study involves a case study of spool cell machines at Parker Hannifin Manufacturing, addressing challenges in data collection, algorithm development, and cultural shifts within the organization. The expected outcome is strategic roadmaps for transitioning from PM to PdM. The study concludes that applying PdM can reduce maintenance costs and enhance operational efficiency
dc.identifier.coursecodeIMSX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/308675
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectMaintenance
dc.subjectPredictive Maintenance
dc.subjectData Science
dc.subjectPrediction Challenges and Benefits
dc.subjectNatural Language Processing in predictive maintenance
dc.subjectArtificial Intelligence in maintenance
dc.titlePredictive maintenance through data-driven decision making
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeProduction engineering (MPPEN), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_thesis__Rasul_and_Konstantinos.pdf
Storlek:
1.07 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: