Auto-tuning RISC-V Vectorized convolutions in oneDNN

dc.contributor.authorJönsson, Samuel
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerPericàs, Miquel
dc.contributor.supervisorPericàs, Miquel
dc.date.accessioned2025-02-25T13:32:42Z
dc.date.available2025-02-25T13:32:42Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractConvolutional Neural Networks are an essential part in deep learning tasks such as image recognition and object detection. The open-source RISC-V ISA with its vector extension offers a great opportunity for optimizing convolution algorithms on high-performance systems. The objective of this thesis was to implement previously vectorized convolution algorithms in a deep learning library called oneDNN and develop a state-of-the-art auto-tuner to further optimize the performance. The algorithms im2col+GEMM were executed and tested on the QEMU emulator running RISC-V Vector Extension 1.0. Four different machine learning models were evaluated for their accuracy and predictive power to auto-tune the algorithms. The results show significant improvement in both execution time and instruction efficiency compared to naive implementations and implementations that didn’t use auto-tuning. The thesis concludes that using a random forest model to auto-tune the convolution algorithm configurations generates the most accurate predictions. Furthermore, the thesis demonstrates the effectiveness of utilizing RISC-V Vector instructions and auto-tuning to optimize im2col+GEMM in oneDNN.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309160
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectConvolutions
dc.subjectNeural Networks
dc.subjectAuto-tuning
dc.subjectVectorized instructions
dc.subjectQEMU
dc.subjectRISC-V
dc.subjectThesis
dc.subjectComputer Engineering
dc.subjectComputer Science
dc.titleAuto-tuning RISC-V Vectorized convolutions in oneDNN
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeHigh-performance computer systems (MPHPC), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 24-114 SJ.pdf
Storlek:
1.28 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: