Spherically symmetric self-gravitating elastic bodies: A numerical investigation

dc.contributor.authorLiljenberg, Astrid
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.examinerAndréasson, Håkan
dc.contributor.supervisorCalogero, Simone
dc.date.accessioned2020-12-17T07:45:00Z
dc.date.available2020-12-17T07:45:00Z
dc.date.issued2020sv
dc.date.submitted2020
dc.description.abstractWe investigate numerically the existence and properties of static self-gravitating elastic balls in the Euler formulation of continuum mechanics. In this formulation sufficient conditions for the existence of finite radius balls were recently derived for the Saint Venant-Kirchhoff, quasi-linear John, and Hadamard material models. Some problems were left open regarding whether or not the sufficient conditions for existence are also necessary. We find numerical evidence suggesting that the hyperbolicity condition at the center is indeed necessary, but that several other conditions on the central densities are stronger than necessary and can be replaced by weaker ones. We also find evidence of finite radius balls existing in the quasilinear Signorini model. Furthermore, the properties of static balls in the recently introduced polytropic elastic material model are investigated and we find numerical evidence of the existence of static spherically symmetric balls, shells and multibodies. Mass-radius diagrams are constructed, some of which admit spiral type curves. Finally, we investigate numerically the existence and properties of timedependent homologous solutions to the Cauchy-Poisson system for polytropic elastic balls and find that solutions exist but do not conserve mass unless static.sv
dc.identifier.coursecodeMVEX03sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/302138
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectSelf-gravitating body, euler formulation of continuum mechanics, spherical symmetry, hyperelastic material, homologous collapse, mass-radius diagram, hyperbolicity condition, polytropic elastic material model, polytropic equation of statesv
dc.titleSpherically symmetric self-gravitating elastic bodies: A numerical investigationsv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Astrid_Liljenberg.pdf
Storlek:
4.26 MB
Format:
Adobe Portable Document Format
Beskrivning:

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: