Lightweight Location Estimation of Boats at Sea from Aerial Drone Footage

dc.contributor.authorKristiansson, Lucas
dc.contributor.authorOlsson, Hampus
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.examinerSjöberg, Jonas
dc.contributor.supervisorFalkman, Fredrik
dc.date.accessioned2025-06-24T06:55:04Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractAbstract This thesis presents a lightweight, modular system for real-time location estimation of boats at sea using aerial drone footage on computationally constrained hardware such as a Raspberry Pi 5, specifically designed for autonomous drone landings. The architecture comprises three core microservice modules – object detection, tracking, and localization – communicating via a custom Redis-based utility class. Object detection is performed by a YOLO11n model, optimized through transfer learning and deployed within the NCNN framework for efficient inference. A nonneural network tracking algorithm, incorporating a simplified Kalman filter and the Jonker-Volgenant assignment method, manages object association. Two depth estimation techniques used for localization are implemented and compared: one utilizing the drone’s altitude and another using the known physical width of the boat. The developed system achieves a mean end-to-end latency of approximately 183 milliseconds. Comparative analysis revealed that the width-based localization method offers greater accuracy than the altitude-based approach at distances below 60 meters, even considering a mean 0.88-pixel error in the detected boat width from the object detection module (assuming a 1-meter drone altitude error). Furthermore, a proposed simple compensation technique for perspective distortion caused by droneboat misalignment demonstrated a reduction in mean position error by 73.11%.
dc.identifier.coursecodeEENX230
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309620
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectKeywords: Object detection, Tracking, Localization, Fixed-wing drone, Aerial imagery, Microservices
dc.titleLightweight Location Estimation of Boats at Sea from Aerial Drone Footage
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master thesis Olsson och Kristiansson.pdf
Storlek:
1.04 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: