Machine Learning for Protostellar Image Fitting. A Convolutional Neural Network Approach

dc.contributor.authorMifsut Benet, Jorge
dc.contributor.departmentChalmers tekniska högskola / Institutionen för rymd-, geo- och miljövetenskapsv
dc.contributor.departmentChalmers University of Technology / Department of Space, Earth and Environmenten
dc.contributor.examinerTan, Jonathan
dc.contributor.supervisorTan, Jonathan
dc.date.accessioned2023-07-12T05:44:43Z
dc.date.available2023-07-12T05:44:43Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractIn this work we present a Convolutional Neural Network (CNN) architecture that can be utilized to regress two key physical features of massive protostars from images in the 19 µm and the 37 µm bands: the inclination angle with respect to the line of sight (θview) and the protostellar mass (m∗). The network was trained on images generated by Monte Carlo Radiative Transfer simulations following the description of massive star formation from the Turbulent Core Model [1] [2] [3]. We show by testing the network on the synthetic data that it is feasible to regress the values for the aforementioned features solely from the morphology of the protostar displayed in the images, with a mean offset of µδ(θ) = −0.43◦ and standard deviation of σδ(θ) = 4.45◦ for θview and µδ(m) = −0.69 M⊙ and σδ(m) = 2.31 M⊙ for m∗. The network is subsequently re-trained with added negative samples to also discern between inputs that contain protostars and inputs that contain random noise, albeit with a slight increase in the dispersion of the offsets. This new model is then tested on an image of Cepheus A from the SOFIA Massive Star Formation Survey and the estimations for θview and m∗ agree within the error range with other estimations in the literature obtained by different methods.
dc.identifier.coursecodeseex30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/306675
dc.language.isoeng
dc.setspec.uppsokLifeEarthScience
dc.subjectDeep Learning, Convolutional Neural Networks, Machine Learning, star formation, protostars, massive stars
dc.titleMachine Learning for Protostellar Image Fitting. A Convolutional Neural Network Approach
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
seex30 Jorge Mifsut Benet.pdf
Storlek:
44.71 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: