Vehicle Design Optimization Using AI/ML Methods

dc.contributor.authorVenugopal Chetan Acharya, Puthige
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerAxelson-Fisk, Marina
dc.contributor.supervisorDamaschke, Peter
dc.date.accessioned2026-01-23T14:33:58Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractEnergy efficiency and performance are important attributes when developing and designing vehicles. With the transition of the automotive industry towards energy efficiency and sustainability, it is ever more important to save computational resources. Traditional vehicle design optimization heavily relies on computationally expensive simulations. The simulations carried out in this project particularly focus on the powertrain of vehicles. This work focuses on developing a surrogate-assisted, multiobjective optimization framework that efficiently finds the optimal values for the given variables. Surrogate modeling is an engineering method used when the outcome of an experiment cannot be easily computed, so a mathematical approximation is applied. In this case, we use machine learning models to predict the outcome of expensive simulations. These trained model(s) is then used for optimization instead of running optimization on the simulation model directly. First, we generate 4096 Sobol-sampled configurations spanning different parameters like gear ratios and electric motors. We train and compare different surrogate models like Random Forest, XGBoost, and LightGBM on these data, achieving test R2 scores up to 0.96 with Random Forest. Next, we employ the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to explore trade-offs among various conflicting objectives, extracting a Pareto front of optimal designs. A weighted-sum post-processing step or a constrained method later selects a single best-trade-off configuration, which full simulation validates. This framework slashes computational cost and empowers rapid, data-driven vehicle powertrain design.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310941
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectMachine Learning
dc.subjectSurrogate modeling
dc.subjectMulti-objective optimization
dc.subjectSimulation
dc.subjectSampling techniques
dc.titleVehicle Design Optimization Using AI/ML Methods
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeData science and AI (MPDSC), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 25-157 AP.pdf
Storlek:
2.67 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: