Energy-Efficient Navigation of Electric Vehicles using Gaussian Processes

dc.contributor.authorSandberg, Jack
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerDubhashi, Devdatt
dc.contributor.supervisorHaghir Chehreghani, Morteza
dc.date.accessioned2023-12-08T10:10:43Z
dc.date.available2023-12-08T10:10:43Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractNavigation software that prioritizes energy efficiency could, through simple means, help extend the effective range and adoption rate of electric vehicles (EV). This thesis extends a previously studied online learning framework using Bayesian inference to find energy-efficient routes. In the extended framework, the characteristics of the road segments are combined with observed energy consumption data to provide probabilistic energy consumption estimates using Gaussian processes (GP). The GP uses a graph Matérn kernel extended from [1] and a feature kernel to model the correlation of energy consumption on separate road segments. The framework is applied to a simple synthetic road network and real-world road networks in the traffic simulator SUMO. The results demonstrate that the GP learns more efficiently in the networks considered than in the Bayesian inference method. Furthermore, we investigate how the GP method is impacted by the number of inducing points, heteroskedastic noise modeling, an informative prior, and the choice of bandit algorithm.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307424
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectGaussian processes
dc.subjectElectric vehicles
dc.subjectOnline learning
dc.subjectMulti-armed bandits
dc.subjectEnergy efficient navigation
dc.titleEnergy-Efficient Navigation of Electric Vehicles using Gaussian Processes
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeEngineering mathematics and computational science (MPENM), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 23-40 JS.pdf
Storlek:
7.32 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: