Stock Prediction from Unlabeled Press Releases using Machine Learning and Weak Supervision

dc.contributor.authorIngvarsson, Markus
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.examinerJohansson, Moa
dc.contributor.supervisorSeger, Carl-Johan
dc.date.accessioned2021-07-02T08:02:16Z
dc.date.available2021-07-02T08:02:16Z
dc.date.issued2021sv
dc.date.submitted2020
dc.description.abstractThis thesis examines the effect of press releases on the Nordic stock market. A weak supervision approach is utilized to estimate the short-term effect on stock returns given press releases of different categories. By utilizing the data programming framework as implemented in the Snorkel library, approximately 24% of all press releases are categorized into a set of 10 distinct categories. Further, a collection of machine learning models for stock price prediction is developed, where simulation is conducted to determine how press releases may be used to forecast stock price movement. Stock price prediction is performed for large stock price movements and for stock price direction, where the result shows that the best performing model achieves a 53% F1-score and 54% accuracy respectively for the tasks. Finally, it appears that the labeled press releases can be used to increase the predictability of stock movements in the Nordic stock market.sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/302938
dc.language.isoengsv
dc.setspec.uppsokTechnology
dc.subjectstock predictionsv
dc.subjectpress releasessv
dc.subjectweak supervisionsv
dc.subjectmachine learningsv
dc.subjectnordic stock marketsv
dc.titleStock Prediction from Unlabeled Press Releases using Machine Learning and Weak Supervisionsv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 21-101 Ingvarsson.pdf
Storlek:
2.41 MB
Format:
Adobe Portable Document Format
Beskrivning:

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.51 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: