SmartSense:AI-Driven Low-Cost Wearable for Real-Time Symptom Detection and Risk Estimation

dc.contributor.authorRanström, Casper
dc.contributor.authorDahlberg, Lukas
dc.contributor.authorIzadi , Ashkan
dc.contributor.authorGhalib, Rami
dc.contributor.authorEl-Haj , Jamal
dc.contributor.authorErkfeldt, Elsa
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.departmentChalmers University of Technology / Department of Electrical Engineeringen
dc.contributor.examinerDurisi, Giuseppe
dc.contributor.supervisorOkumus, Kaan
dc.date.accessioned2025-06-17T12:29:15Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractAsthma is a chronic respiratory condition that demands continuous symptom monitoring to prevent severe health complications. This project aims to create Smart- Sense, a low-cost, wearable prototype designed to detect early symptoms of asthma using real-time physiological monitoring. The device integrates a conductive rubber band to track chest expansion and a digital microphone for cough detection. A microcontroller samples the sensor data, performs onboard signal processing using FFT for breathing analysis, and applies a quantized neural network model for AIbased cough classification. Processed data is transmitted to a companion mobile application via BLE, enabling real-time visualization, alerts, and symptom tracking. Emphasis is placed on local data processing and energy efficiency to support extended autonomous operation. Testing showed promising results in detecting respiratory patterns and classifying cough events, although challenges such as background noise sensitivity and sensor nonlinearity remain. SmartSense demonstrates the feasibility of affordable, embedded AI in wearable health technologies and lays the groundwork for future clinical validation and commercial development.
dc.identifier.coursecodeEENX16
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309498
dc.language.isoeng
dc.relation.ispartofseries00000
dc.setspec.uppsokTechnology
dc.subjectwearable technology
dc.subjectasthma management
dc.subjectsymptom detection
dc.subjectartificial intelligence
dc.subjectbluetooth low energy
dc.subjectmobile application
dc.subjectreal time monitoring
dc.subjecthealth risk
dc.titleSmartSense:AI-Driven Low-Cost Wearable for Real-Time Symptom Detection and Risk Estimation
dc.type.degreeExamensarbete på kandidatnivå
dc.type.degreeBachelor Thesis
dc.type.uppsokM2

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
annotated-Project_Raport_V2%20%283%29.pdf
Storlek:
5.79 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: